

**Selective Synthesis of Chiral
Dioxabicyclo[4.4.0]decane and
Dioxabicyclo[5.3.0]decane from
3,4-Bisallyloxy-but-1-yne Derivatives via
Ruthenium-Catalyzed En-yn-ene
Metathesis**

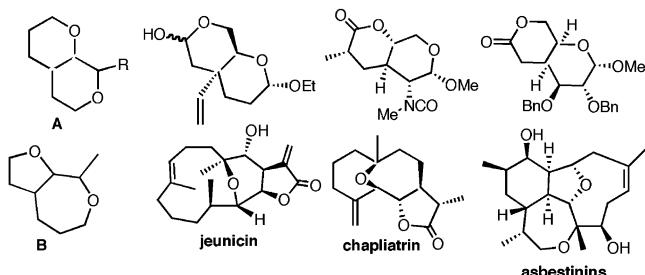
Chang-Jung Wu, Reniguntala J. Madhushaw, and
Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University,
Hsinchu, Taiwan, 30043, ROC

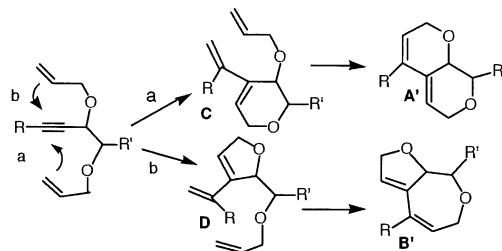
rsliu@mx.nthu.edu.tw

Received May 5, 2003

Abstract: We prepared a series of chiral 3,4-bisallyloxy-but-1-yne s having syn and anti configurations. Treatment of these substrates with Grubbs catalyst $\text{Cl}_2(\text{PCy}_3)_2\text{Ru}=\text{CHPh}$ (3 mol %) preferably gave chiral dioxabicyclo[4.4.0]decane (yields > 55%) in addition to dioxabicyclo[5.3.0]decane in minor proportions. On substitution of the 4-allyloxy group of these substrates with a 4-but-2-enyloxy group, the metathesis reactions produced only dioxabicyclo[5.3.0]decane in the presence of Grubbs ruthenium-imidazolidene carbene catalyst.


Enantiopure bicyclic ethers with frameworks **A** and **B** are often encountered in many naturally occurring compounds.^{1–3} Scheme 1 shows several representatives^{2,3} that exhibit interesting biological activities, including jeunicin,^{3c} chapliatrin,^{3d} asbestinins.^{3e} These two bicyclic ethers are also useful building blocks for complex bioactive molecules.^{1–3} A selective synthesis of these frameworks from one precursor is a challenging synthetic issue. Scheme 2 shows a protocol toward synthesis of enantiopure forms of frameworks **A** and **B** from chiral 3,4-bisallyloxy-but-1-yne via ruthenium-catalyzed en-yn-ene metathesis. Two pathways (a and b) are conceivable for such an en-yn-ene metathesis, via intermediate **C** or **D**, that ultimately lead to dioxabicyclo[4.4.0]decane and dioxabicyclo[5.3.0]decane **A'** and **B'**, respectively. Synthesis of oxygenated molecules via enyne metathesis using Grubbs catalyst might encounter difficulties according to literature reports.⁴ Functional groups such as alcohols, esters, or ethers may either not react or perform poorly in enyne metathesis. Chelation of an oxygen atom to a ruthenium carbene catalyst generally impedes catalytic reactivity.⁴ The problem can be circumvented

(1) (a) Fraser-Reid, B.; Tsang, R.; Tulshian, D. B.; Sun, K. M. *J. Org. Chem.* **1981**, *46*, 3764. (b) Wang, Y.; Babirad, A. A.; Kishi, Y. *J. Org. Chem.* **1992**, *57*, 468. (c) Fuerstner, A.; Mueller, T. *J. Org. Chem.* **1998**, *63*, 424.


(2) (a) Rodriguez, A. D.; Pina, I. C.; Acosta, A. L.; Barnes, C. L. *Tetrahedron* **2001**, *57*, 93. (b) Gonzalez, A. G.; Galindo, A.; Mansilla, H.; Gutierrez, A.; Palenzuela, J. A. *J. Org. Chem.* **1985**, *50*, 5856.

(3) (a) Stierle, D. B.; Carte, B.; Faulkner, D. J.; Tagle, B.; Clardy, J. *J. Am. Chem. Soc.* **1985**, *50*, 5856. (b) Selover, S. J.; Crews, P.; Tagles, B.; Clardy, J. *J. Org. Chem.* **1981**, *46*, 964. (c) Rodriguez, A. D.; Pina, I. C.; Barnes, C. L. *J. Org. Chem.* **1995**, *60*, 8096. (d) Gonzalez, A. G.; Galindo, A.; Mansilla, H.; Gutierrez, A.; Palenzuela, J. A. *J. Org. Chem.* **1995**, *60*, 8096. (e) Stierle, D. B.; Carte, B.; Faulkner, D. R.; Tagle, B.; Clardy, J. *J. Am. Chem. Soc.* **1980**, *102*, 5088.

SCHEME 1

SCHEME 2

with the use of ethylene gas or ruthenium-imidazolidene carbene catalyst.⁵ Selective synthesis of bicyclic ethers **A'** or **B'** via tandem en-yn-ene metathesis of chiral 3,4-bisallyloxy-but-1-yne is therefore deemed an interesting synthetic approach to be studied.

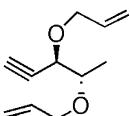
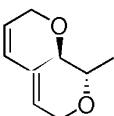
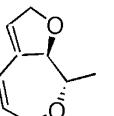
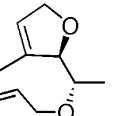
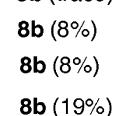
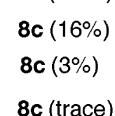
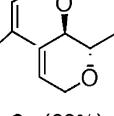
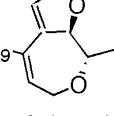
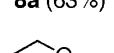
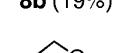
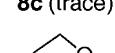
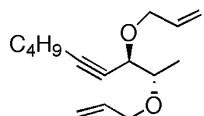
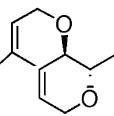
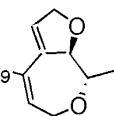
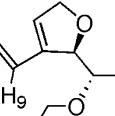
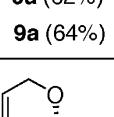
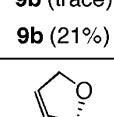
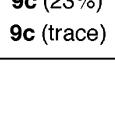
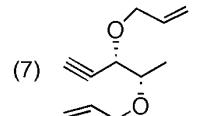
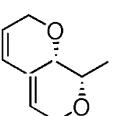
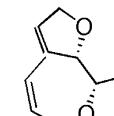
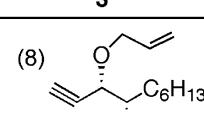
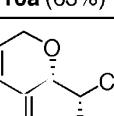
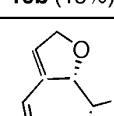
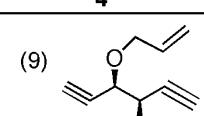
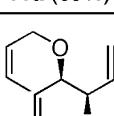
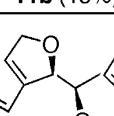
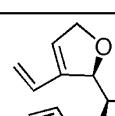
The alkynyl 3,4-*anti*- and *syn*-diol precursors for the bis(allyloxy) derivatives **1–4** (Table 1) were prepared according to published methods.^{6,7} As shown in Scheme 3, we also prepared (3*S*,4*S*)-3,4-di(allyloxy-1,5-hexadiyne) (**5**) in a few steps from a derivative of diethyl L-tartrate (eq 1).⁸ Eqs 2 and 3 show the protocol⁹ for synthesizing chiral *anti*-diol **6** and *syn*-diol **7**, respectively, both having a 4-but-2-enyloxy substituent.

We first examined the metathesis on *anti*-diol derivative **1** using Grubbs catalysts **I**¹⁰ and **II**¹¹ (Scheme 4). As shown in Table 1, treatment of the *anti*-diol derivative **1** with Grubbs catalyst $\text{Cl}_2(\text{PCy}_3)_2\text{Ru}=\text{CHPh}$ (**I**) (2 mol %)

(4) (a) Furstner, A. *Angew. Chem., Int. Ed.* **2000**, *39*, 3013. (b) Poulsom, C. S.; Madsen, R. *Synthesis* **2003**, 1.

(5) (a) Smulik, J. A.; Diver, S. T. *J. Org. Chem.* **2000**, *65*, 1788. (b) Smulik, J. A.; Diver, S. T. *Org. Lett.* **2000**, *2*, 2271. (c) Choi, T.-L.; Lee, C. W.; Chatterjee, A. K.; Grubbs, R. H. *J. Am. Chem. Soc.* **2001**, *123*, 10417. (d) Kinoshita, A.; Sakakibara, N.; Mori, M. *J. Am. Chem. Soc.* **1997**, *119*, 12388. (e) Hoye, T. R.; Donaldson, S. M.; Vos, T. J. *Org. Lett.* **1999**, *1*, 277.

(6) (a) Chen, M.-J.; Lo, C.-Y.; Chin, C.-C.; Liu, R.-S. *J. Org. Chem.* **2000**, *65*, 6362. (b) Ishibashi, T.; Ochiai, N.; Mori, M. *Tetrahedron Lett.* **1996**, *36*, 6165.





























(7) (a) Sharpless, K. B.; Amberg, W.; Beller, M.; Chen, H.; Hartung, J.; Kawanami, Y.; Lubben, D.; Manoury, E.; Ogino, Y.; Shibata, T.; Ukita, T. *J. Org. Chem.* **1991**, *56*, 4585. (b) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. *J. Org. Chem.* **1992**, *57*, 2768.

(8) (a) Mukai, C.; Kasamatsu, E.; Ohyama, T.; Hanaoka, M. *J. Chem. Soc., Perkin Trans. 1* **2000**, 737. (b) Corey, E. J.; Fuchs, P. L. *Tetrahedron Lett.* **1972**, *13*, 3769.

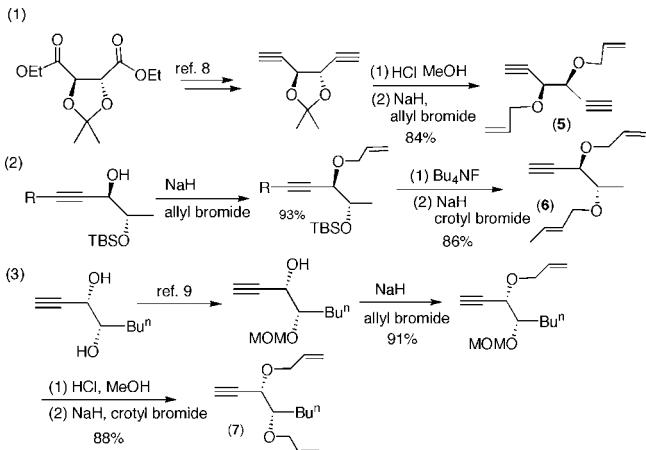
(9) (a) Friesen, R. W.; Vanderwal, C. *J. Org. Chem.* **1996**, *61*, 9103. (b) Chen, M.-J.; Lo, C.-Y.; Liu, R.-S. *Synlett* **2000**, 1205.

(10) (a) Kim, S.-H.; Zuercher, W.-J.; Bowden, N. B.; Grubbs, R. H. *J. Org. Chem.* **1996**, *61*, 1073. (b) Kim, S.-H.; Bowden, N.; Grubbs, R. H. *J. Am. Chem. Soc.* **1994**, *116*, 10801. (c) Trnka, T. M.; Grubbs, R. H. *Acc. Chem. Res.* **2001**, *34*, 18.

TABLE 1. Ruthenium-Catalyzed En-yn-ene Metathesis of Alkynyldiol Derivatives

reactants	catalyst	products (yields) ^{a,c}					
 (1) 1	I ^b		8a (trace)		8b (trace)		8c (trace)
	I		8a (60%)		8b (8%)		8c (16%)
	II ^b		8a (25%)		8b (8%)		8c (3%)
	II		8a (63%)		8b (19%)		8c (trace)
 (5) 2	I		9a (62%)		9b (trace)		9c (23%)
	II		9a (64%)		9b (21%)		9c (trace)
 (7) 3	I		10a (63%)		10b (15%)		
 (8) 4	I		11a (65%)		11b (13%)		
 (9) 5	I		12a (56%)		12b (23%)		12c (6%)

^a Unless specified, the reaction was carried out under ethylene gas (1.0 atm) in CH_2Cl_2 (0.15 M) in the presence of 2.0 mol % catalyst.


^b Under a N_2 atmosphere, 88 and 56% yields of compound **1** were recovered in entries 1 and 3, respectively. ^c Yields are reported after separation from column chromatography on silica gel.

in CH_2Cl_2 (23 °C, 48 h) under nitrogen failed to give any cyclic product in significant amount. The metathesis, however, proceeded smoothly in the presence of ethylene gas, which was shown by Mori¹² to have an accelerating effect on en-yne metathesis. In the presence of catalyst (I), the products from substrate **1** consisted of dioxabicyclo[4.4.0]decane (**8a**), dioxabicyclo[5.3.0]decane (**8b**), and furan derivative (**8c**); the isolated yields were 60, 8, and 16%, respectively. Structural assignment of bicyclic ethers **8a–c** are based on proton chemical shifts of the methylene OCH_2 protons, which have values of 4.58 and 4.25 ppm for five- and six-membered ether frameworks,¹³ respectively. The corresponding olefinic protons $=\text{CH}$ for five- and six-membered ethers occur at 5.80 and 5.42 ppm, respectively.¹² References for the NMR data of these

(11) (a) Louie, J.; Bielawski, C. W.; Grubbs, R. H. *J. Am. Chem. Soc.* **2001**, *123*, 11312. (b) Morgan, John P.; Grubbs, R. H. *Org. Lett.* **2000**, *2*, 3153. (c) Lee, C. W.; Choi, T.-L.; Grubbs, R. H. *J. Am. Chem. Soc.* **2002**, *124*, 3224.

(12) (a) Kitamura, T.; Mori, M. *Org. Lett.* **2001**, *3*, 1161. (b) Mori, M.; Sakakibara, N.; Kinoshita, A. *J. Org. Chem.* **1998**, *63*, 6082. (c) Kinoshita, A.; Sakakibara, N.; Mori, M. *Tetrahedron* **1999**, *55*, 8155.

SCHEME 3

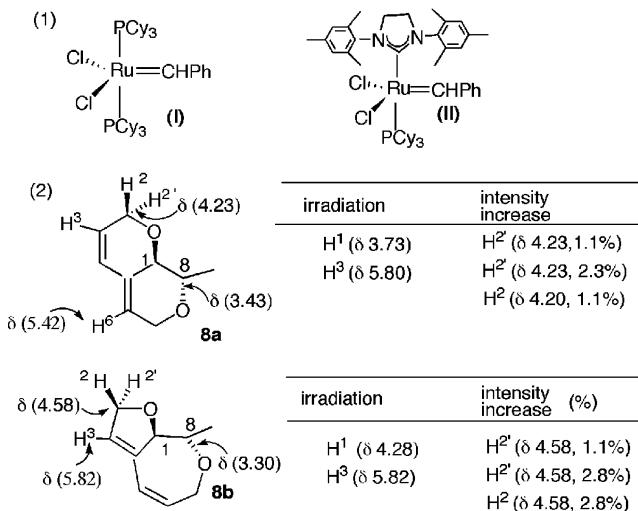

oxacyclic frameworks are available from our previous investigation.¹³

TABLE 2. Selective Synthesis of Dioxabicyclo[5.3.0]decane via Tandem En-yn-ene Metathesis

reactants	products (yields) ^{a,b}	reactants	products (yields)
(1)		(4)	
(2)		(5)	
(3)		(6)	

^a Unless specified, the reaction was carried out under ethylene gas (1.0 atm) in CH_2Cl_2 (0.15 M) in the presence of 2.0 mol % ruthenium-imidazolylidene catalyst **II**. ^b Yields are reported after separation from column chromatography on silica gel.

SCHEME 4. Catalysts, ^1H NMR Shifts, and NOE Maps

^1H NOE maps of compounds **8a** and **8b** shown in Scheme 4 are consistent with the proposed structure. Using Ru-imidazolylidene catalyst **II**, only dioxabicyclo[4.4.0]decane (**8a**) and dioxabicyclo[5.3.0]decane (**8b**) were obtained in 63 and 19% yields, respectively, under ethylene gas (entry 4). If the reaction was carried out under nitrogen, the yields of compounds **8a–c** were 25, 8, and 3%, respectively, in addition to a 56% recovery yield of starting bisallyloxy compound **1** (entry 3). This tandem en-yn-ene metathesis is also applicable to disubstituted alkyne **2** (entry 5), which gave dioxabicyclo[4.4.0]decane **9a** and furanyl diene **9c** in 62 and 23% yields, respectively. In the presence of ruthenium-imidazolylidene catalyst **II**, the minor product became dioxabicyclo[5.3.0]decane (**9b**) (entry 6). Entries 7 and 8 show catalytic transformations of *syn*-diol substrates **3** and **4**.

(13) Guo, H.; Madhushaw, R. J.; Shen, F.-M.; Liu, R.-S. *Tetrahedron* **2002**, *58*, 5627.

to give preferably dioxabicyclo[4.4.0]decane **10a** and **11a** (>63%) in addition to dioxabicyclo[5.3.0]decanes **10b** and **11b** (13–15%) in minor proportions. Evidently, dioxabicyclo[5.3.0]decanes **10b** and **11b** with the *syn* configuration are more readily formed from metathesis than their *anti* analogues **8b** and **9b**. Although several cyclic products can result from highly functionalized dien-diyne **5** (entry 9), dioxabicyclo[4.4.0]decane (**12a**) is the preferable product (56%) accompanied by formation of bis-furan **12b** (23%) and furan **12c** (6%), respectively.

The results in Table 1 reveal that the preferential selectivity of dioxabicyclo[4.4.0]decane is attributed to a thermodynamic issue because a 2,5-dihydrofuran ring is more strained compared with a 3,6-dihydro-2*H*-pyran ring. On the basis of calculation,¹⁴ *anti*-dioxabicyclo[4.4.0]decane **8a** is ca. 5.9 kJ/mol lower in energy than *anti*-dioxabicyclo[5.3.0]decane **8b**, whereas *syn*-dioxabicyclo[4.4.0]decane **11a** has an energy that is 10.2 kJ/mol smaller than that of *syn*-bicyclic dioxabicyclo[5.3.0]decane **11b**.

An approach for selective synthesis of *syn*- and *anti*-dioxabicyclo[5.3.0]decanes is shown in Table 2 in which the protocol is based on kinetic differentiation. Enyne metathesis of a 1,2-disubstituted olefin is known to proceed much more slowly than that of a vinyl group.¹² Substrates **6**, **7**, **13**, and **14** bear a 4-but-2-enyloxy group to inhibit the formation of a 3,6-dihydro-2*H*-pyran ring. Consistent with our expectation, tandem metathesis of these substrates using ruthenium-imidazolylidene catalyst **II** afforded only chiral dioxabicyclo[5.3.0]decanes in good yields (>77%). It worked well for not only both *syn*- and *anti*-diol derivatives but also terminal and disubstituted alkynes (entries 1–4). An alternative approach for selective synthesis of dioxabicyclo[4.4.0]decane is provided in entries 5 and 6, and substrates **15** and **16** have a 3-but-2-enyloxy group, which upon metathesis

(14) Calculation of relative energies of dioxabicyclo[4.4.0]decane and dioxabicyclo[5.3.0]decane were performed using the MM2 program (Pro. 6.0 edition).

gives only dioxabicyclo[4.4.0]decanes **8a** and **18a** with little byproducts (<1%).

In summary, we report a selective synthesis of enantiopure dioxabicyclo[4.4.0]decane and dioxabicyclo[5.3.0]-decane based on tandem en-yn-ene metathesis. Treatment of 3,4-bisallyloxy-but-1-yn-ene derivatives with Grubbs catalysts preferably gave chiral dioxabicyclo[4.4.0]decane plus dioxabicyclo[5.3.0]decane in minor proportions. On substitution of the 4-allyloxy group of these substrates with a 4-but-2-enyloxy group, the catalytic reactions afforded only dioxabicyclo[5.3.0]decane in the presence of ruthenium-imidazolidene carbene catalyst.

Experimental Sections

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere in oven-dried glassware using standard syringe, cannula, and septa apparatus. Benzene, diethyl ether, tetrahydrofuran, and hexane were dried with sodium benzophenone and distilled before use. Dichloromethane was dried over CaH_2 and distilled before use. Chiral diol derivatives **1–4** were prepared according to literature procedures.^{6–7,15} The ee values of compounds **1–4** exceeded 97% on the basis of HPLC analysis (Chiralcel OD, diisopropyl ether/hexane = 1/50). Synthetic procedures and spectral data of compounds **1–7** and **9–18** are provided in Supporting Information. All NMR spectra were run at 400 MHz (^1H NMR) or 100 MHz (^{13}C NMR) in CDCl_3 solution.

General Procedure for the Catalytic En-yn-ene Metathesis. To a 25 mL flask were added ruthenium catalyst ($\text{PCy}_3)_2\text{Cl}_2\text{-Ru=CHPh}$ **I** (18.1 mg, 0.022 mmol, 2.0 mol %) in CH_2Cl_2 (7.39 mL, 0.15 M) via a syringe and then a CH_2Cl_2 solution (0.50 mL) of *anti*-diol derivative **1** (200 mg, 1.10 mmol) under an atmosphere of ethylene gas (1.0 atm). The resulting light brown solution was allowed to stir at 23 °C for 48 h. The solution was filtered over a short silica bed and chromatographed over a

preparative silica plate (diethyl ether/hexane = 1/5) to afford fused dioxabicyclo[4.4.0]decane **8a** (100 mg, 0.65 mmol, 60%), dioxabicyclo[5.3.0]decane **8b** (13.3 mg, 0.087 mmol, 8%), and furan derivative **8c** (31.0 mg, 0.172 mmol, 16.0%), respectively.

Spectral Data for (8*S,8aR*)-8-Methyl-2,6,8,8a-tetrahydro-pyran[3,4-b]-pyran (8a): $[\alpha]^{23}_{\text{D}} +46.2$ (*c* 1.0, CHCl_3); ^1H NMR (δ ppm) δ 6.14 (d, $J = 10.4$ Hz, 1 H), 5.80 (d, $J = 12.4$ Hz, 1 H), 5.42 (s, 1 H), 4.30–4.18 (m, 4 H), 3.72 (d, $J = 8.8$ Hz, 1 H), 3.44–3.40 (m, 1 H), 1.20 (d, $J = 6.8$ Hz, 3 H); ^{13}C NMR δ 130.5, 127.2, 124.3, 121.1, 74.4, 72.5, 65.9, 65.5, 18.4; HRMS calcd for $\text{C}_9\text{H}_{12}\text{O}_2$ 152.0854, found 152.0859.

Spectral Data for (8*S,8aR*)-8-Methyl-2,6,8,8a-tetrahydro-furo[2,3-c]oxepine (8b): $[\alpha]^{23}_{\text{D}} +10.2$ (*c* 1.0, CHCl_3); ^1H NMR δ 6.28 (d, $J = 11.6$ Hz, 1 H), 5.82 (s, 1 H), 5.63 (dd, $J = 12.0, 4.4$ Hz, 1 H), 4.62–4.58 (m, 2 H), 4.35 (dd, $J = 14.0, 5.2$ Hz, 1 H), 4.32–4.31 (m, 1 H), 4.26 (d, $J = 17.6$ Hz, 1 H), 3.34–3.31 (m, 1 H), 1.32 (d, $J = 3.8$ Hz, 3 H); ^{13}C NMR δ 139.5, 130.5, 125.9, 120.6, 88.6, 79.1, 74.0, 69.4, 19.1; HRMS calcd for $\text{C}_9\text{H}_{12}\text{O}_2$ 152.0164, Found 152.0167.

Spectral Data for (2*R*)-2-[(1*S*)-1-(Allyloxy-ethyl)-3-vinyl-2,5-dihydro-furan (8c): $[\alpha]^{23}_{\text{D}} -12.6$ (*c* 1.0, CHCl_3); ^1H NMR δ 6.41 (dd, $J = 18.0, 11.2$ Hz, 1 H), 5.99–5.95 (m, 1 H), 5.90 (s, 1 H), 5.31 (dd, $J = 16.0, 1.6$ Hz, 1 H), 5.20–5.14 (m, 4 H), 4.74–4.69 (m, 2 H), 4.12 (dd, $J = 12.8, 2.8$ Hz, 1 H), 4.05 (dd, $J = 12.8, 2.8$ Hz, 1 H), 3.80–3.77 (m, 1 H), 1.04 (d, $J = 6.4$ Hz, 3 H); ^{13}C NMR δ 139.1, 135.4, 129.4, 126.7, 116.7, 116.2, 86.2, 75.7, 75.6, 69.7, 12.7; HRMS calcd for $\text{C}_{11}\text{H}_{16}\text{O}_2$ 180.1257, found 180.1252.

Acknowledgment. The authors wish to thank the National Science Council, Taiwan, for Support of this research.

Supporting Information Available: Spectral data of compounds **1–7** and **9–18** in repetitive experiments. This material is available free of charge via the Internet at <http://pubs.acs.org>.

JO0301548

(15) Liu, B.; Chen, M.-J.; Lo, C.-Y.; Liu, R.-S. *Tetrahedron Lett.* **2001**, 42, 2533.